Part Number Hot Search : 
C2001 BFG198TR PC2508 MCT62SD KIA431AF HMC28606 SHJD1520 TINY45V
Product Description
Full Text Search
 

To Download IRG4BC30FD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRG4BC30FD insulated gate bipolar transistor with ultrafast soft recovery diode features features features features features e g n-channel c v ces = 600v v ce(on) typ. = 1.59v @v ge = 15v, i c = 17a parameter min. typ. max. units r q jc junction-to-case - igbt ------ ------ 1.2 r q jc junction-to-case - diode ------ ------ 2.5 c/w r q cs case-to-sink, flat, greased surface ------ 0.50 ------ r q ja junction-to-ambient, typical socket mount ----- ----- 80 wt weight ------ 2 (0.07) ------ g (oz) thermal resistance fast copack igbt 12/8/98 absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 31 i c @ t c = 100c continuous collector current 17 i cm pulsed collector current ? 120 a i lm clamped inductive load current ? 120 i f @ t c = 100c diode continuous forward current 12 i fm diode maximum forward current 120 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 100 p d @ t c = 100c maximum power dissipation 42 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) ? fast: optimized for medium operating frequencies ( 1-5 khz in hard switching, >20 khz in resonant mode). ? generation 4 igbt design provides tighter parameter distribution and higher efficiency than generation 3 ? igbt co-packaged with hexfred tm ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations ? industry standard to-220ab package benefits ? generation -4 igbt's offer highest efficiencies available ? igbt's optimized for specific application conditions ? hexfred diodes optimized for performance with igbt's . minimized recovery characteristics require less/no snubbing ? designed to be a "drop-in" replacement for equivalent industry-standard generation 3 ir igbt's pd -91451b w to-220ab www.irf.com 1
IRG4BC30FD 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ---- 51 77 i c = 17a qge gate - emitter charge (turn-on) ---- 7.9 12 nc v cc = 400v see fig. 8 q gc gate - collector charge (turn-on) ---- 19 28 v ge = 15v t d(on) turn-on delay time ---- 42 ---- t j = 25c t r rise time ---- 26 ---- ns i c = 17a, v cc = 480v t d(off) turn-off delay time ---- 230 350 v ge = 15v, r g = 23 w t f fall time ---- 160 230 energy losses include "tail" and e on turn-on switching loss ---- 0.63 ---- diode reverse recovery. e off turn-off switching loss ---- 1.39 ---- mj see fig. 9, 10, 11, 18 e ts total switching loss ---- 2.02 3.9 t d(on) turn-on delay time ---- 42 ---- t j = 150c, see fig. 9, 10, 11, 18 t r rise time ---- 27 ---- ns i c = 17a, v cc = 480v t d(off) turn-off delay time ---- 310 ---- v ge = 15v, r g = 23 w t f fall time ---- 310 ---- energy losses include "tail" and e ts total switching loss ---- 3.2 ---- mj diode reverse recovery. l e internal emitter inductance ---- 7.5 ---- nh measured 5mm from package c ies input capacitance ---- 1100 ---- v ge = 0v c oes output capacitance ---- 74 ---- pf v cc = 30v see fig. 7 c res reverse transfer capacitance ---- 14 ---- ? = 1.0mhz t rr diode reverse recovery time ---- 42 60 ns t j = 25c see fig. ---- 80 120 t j = 125c 14 i f = 12a i rr diode peak reverse recovery current ---- 3.5 6.0 a t j = 25c see fig. ---- 5.6 10 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ---- 80 180 nc t j = 25c see fig. ---- 220 600 t j = 125c 16 di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery ---- 180 ---- a/s t j = 25c see fig. during t b ---- 120 ---- t j = 125c 17 parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage ? 600 ---- ---- v v ge = 0v, i c = 250a d v (br)ces / d t j temperature coeff. of breakdown voltage ---- 0.69 ---- v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ---- 1.59 1.8 i c = 17a v ge = 15v ---- 1.99 ---- v i c = 31a see fig. 2, 5 ---- 1.70 ---- i c = 17a, t j = 150c v ge(th) gate threshold voltage 3.0 ---- 6.0 v ce = v ge , i c = 250a d v ge(th) / d t j temperature coeff. of threshold voltage ---- -11 ---- mv/c v ce = v ge , i c = 250a g fe forward transconductance ? 6.1 10 ---- s v ce = 100v, i c = 17a i ces zero gate voltage collector current ---- ---- 250 a v ge = 0v, v ce = 600v ---- ---- 2500 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ---- 1.4 1.7 v i c = 12a see fig. 13 ---- 1.3 1.6 i c = 12a, t j = 150c i ges gate-to-emitter leakage current ---- ---- 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)
IRG4BC30FD www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics load current ( a ) 1 10 100 1000 1 10 ce c i , collector-to-emitter current (a) v , collector-to-emitter volta g e ( v ) t = 150c t = 25c j j v = 15v 20s pulse width ge a 1 10 100 1000 5 6 7 8 9 10 11 12 13 c i , collector-to-emitter current (a) ge t = 25c t = 150c j j v , gate-to-emitter volta g e ( v ) a v = 50v 5s pulse width cc 0 4 8 12 16 20 0.1 1 10 100 f, fre q uenc y ( khz ) a 6 0% of rated voltage i duty cycle: 50% t = 125c t = 90c gate drive as specified turn-on losses include effects of reverse recovery sink j power dissipation = 21w
IRG4BC30FD 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 1.0 1.5 2.0 2.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 ce v , collector-to-emitter voltage (v) v = 15v 80s pulse width ge a t , junction temperature ( c ) j i = 8.5a i = 17a i = 34a c c c 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 t , rectangular pulse duration (sec) 1 thjc d = 0.50 0.01 0.02 0.05 0.10 0.20 sin g le pulse (thermal response) therm al r esponse (z ) p t 2 1 t dm notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c 0 10 20 30 40 25 50 75 100 125 150 maximum dc collector current (a) t , case tem perature (c) c v = 15v ge
IRG4BC30FD www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature total switchig losses (mj) 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 a t , junction temperature ( c ) j i = 8.5a i = 17a i = 34a r = 23 w v = 15v v = 480v g ge cc c c c total switchig losses (mj) 1.80 1.90 2.00 2.10 2.20 0 20406080 a r , gate resistance ( w ) g v = 480v v = 15v t = 25c i = 17a cc ge j c 0 400 800 1200 1600 2000 1 10 100 ce c, capacitance (pf) v , collector-to-emitter volta g e ( v ) a c ies c res c oes v ge = 0v f = 1 mhz cies = cge + cgc + cce shorted cres = cce coes = cce + cgc 0 4 8 12 16 20 0 102030405060 ge v , gate-to-emitter voltage (v) g q , total gate char g e ( nc ) a v = 400v i = 17a ce c
IRG4BC30FD 6 www.irf.com fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current total switchig losses (mj) 0.0 2.0 4.0 6.0 8.0 0 10203040 c i , collector-to-emitter current ( a ) a r = 23 w t = 150c v = 480v v = 15v g j cc ge 1 10 100 1000 1 10 100 1000 c ce ge v , collector-to-e m itter v oltage (v ) i , collector-to-emitter current (a) safe operating area v = 20v t = 125c ge j 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 fm f instantaneous forward current - i (a) forward volta g e drop - v (v) t = 150c t = 125c t = 25c j j j
IRG4BC30FD www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 200 400 600 100 1000 f di /dt - (a/s) rr q - (nc) i = 6.0a i = 12a i = 24a v = 200v t = 125c t = 25c r j j f f f 10 100 1000 10000 100 1000 f di /dt - (a/s) di(rec)m/dt - (a/s) i = 12a i = 24a i = 6.0a f f f v = 200v t = 125c t = 25c r j j 0 40 80 120 160 100 1000 f di /dt - (a/s) t - (ns) rr i = 24a i = 12a i = 6.0a f f f v = 200v t = 125c t = 25c r j j 1 10 100 100 1000 f di /dt - (a/s) i - (a) irrm i = 6.0a i = 12a i = 24a f f f v = 200v t = 125c t = 25c r j j
IRG4BC30FD 8 www.irf.com fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +v g 10% +v g 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same t y pe device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% c i c e on e off ts on off e = (e +e ) v v ge
IRG4BC30FD www.irf.com 9 v g gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit
IRG4BC30FD 10 www.irf.com notes: ? repetitive rating: v ge =20v; pulse width limited by maximum junction temperature (figure 20) ? v cc =80 %( v ces ), v ge =20v, l=10h, r g = 23 w (figure 19) ? pulse width 80s; duty factor 0.1% . ? pulse width 5.0s, single shot. case outline ? to-220ab 0.55 (.022) 0.46 (.018) 3 x 2.92 (.115) 2.64 (.104) 1.32 (.052) 1.22 (.048) - b - 4.69 (.185) 4.20 (.165) 3.78 (.149) 3.54 (.139) - a - 6.47 (.255) 6.10 (.240) 1.15 (.045) min 4.06 (.160) 3.55 (.140) 3 x 3.96 (.160) 3.55 (.140) 3 x 0.93 (.037) 0.69 (.027) 0.36 (.014) m b a m 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 3 x 2.54 (.100) 2x 1 2 3 4 conforms to jedec outline to-220ab dim ensions in millim eters and (inches) lead assignments 1 - g ate 2 - co llect o r 3 - em itt er 4 - co llect o r notes: 1 dimensions & tolerancing per ansi y14.5m , 1982. 2 controlling dimension : inch. 3 dim ension s are sh o w n m illim et er s (in ches). 4 conforms to jedec outline to -220ab. world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 ir great britain: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 15 lincoln court, brampton, ontario l6t3z2, tel: (905) 453 2200 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 1 kim seng promenade, great world city west tower, 13-11, singapore 237994 tel: ++ 65 838 4630 ir taiwan: 16 fl. suite d. 207, sec. 2, tun haw south road, taipei, 10673, taiwan tel: 886-2-2377-9936 http://www.irf.com/ data and specifications subject to change without notice. 12/98


▲Up To Search▲   

 
Price & Availability of IRG4BC30FD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X